If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^(2)-36X-299=0
a = 1; b = -36; c = -299;
Δ = b2-4ac
Δ = -362-4·1·(-299)
Δ = 2492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2492}=\sqrt{4*623}=\sqrt{4}*\sqrt{623}=2\sqrt{623}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{623}}{2*1}=\frac{36-2\sqrt{623}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{623}}{2*1}=\frac{36+2\sqrt{623}}{2} $
| 3-6n=-21 | | –18=p*2 | | –18=p/2 | | X^(2)-36x+299=0 | | x+30/6=1-3x/3 | | x^2+(x+2)^2=340 | | 25/2/3=k | | 12+d=17 | | 27x+14=0 | | 3.45x=8 | | 3x(x–2)–(x–6)=4(x–3)+10 | | 250=(3.14)r | | 81^2r×27^r/9^r=729 | | 5x+16=15x-4 | | 9x-22=-10+12x | | 0=x2+14x+48 | | 252/3=k- | | 6/11-9/7=n | | 48=t-6 | | X=5y.X+y=48 | | 40=0.20x | | m-3=m+16 | | 2(5+-2)=(3y+1) | | 3y-2=2y-6 | | 74=d+ | | 5a+1=6a-3 | | 2(6-5x)=5(3-1x) | | 4x^+1=45 | | (15-2x)(10-2x)=120 | | 8=16d+51 | | –8=4n–6n-18 | | 5x+-18=63 |